Opening Times:

6.00 AM - 21.00 PM

Call Us:

077699 02529

Is scale weight an accurate way to track progress?

When people embark on a fitness journey, whether that be to lose body fat or gain muscle mass, the common tool to track their progress people use is how much the number on the scales changes over time. However, is this the most accurate way to track progress towards body composition goals? Just like most questions relating to health and fitness, the answer is- it depends.

 

The first thing to remember is that scale weight is the total weight of all the tissues in your body and not just muscle and fat. Therefore, it is not the most accurate measurement when it comes to measuring body composition. Other methods include skin fold callipers, a cheap tool which measures body fat percentage. However, despite its low cost, the skill needed to take an accurate measurement makes this a fairly inaccessible method of measuring body composition. The gold standard of body composition measurement in a DEXA Scanner. Although, this is a very expensive piece of equipment, only really seen in medical facilities due to its use in also identifying bone density and helping diagnose patients with osteoporosis. Due to other methods being inaccessible, scales are by far the most common tool used by the general population to assess progress in their body composition goals, so what can be done to ensure you are getting the most reliable and accurate changes to body fat and muscle as you can with scales?

 

Any tool is only effective when you know how to use it and scales are no different. Weighing yourself on Monday at 7am and then again on Sunday at 8pm will not give an accurate measurement for how your weight has changed over the course of the week, due to factors that will be discussed in this article. Therefore, if you are to use scales accurately, I would recommend taking daily measurements, first thing in the morning each day and then calculating the mean average each week and compare each week’s average from the last, to get a more accurate measurement of how much your weight is changing due to changes to fat or muscle tissue.

 

So, what factors can influence the weight on the scales besides from muscle and fat tissue? Firstly, there’s water retention. The amount of water our bodies hold will hold will change throughout the day, as well as day by day. Reasons for this include carbohydrate and sodium intake, which cause our bodies to hold more water- not add on fat tissue (a common misconception in, the case of carbohydrates, spread by the misinformed and keto zealots). Therefore, if your diet is more heavily carbohydrate based for a few days, then you may add some weight. However, this will be due to the added water retention from an increased intake of carbohydrates, not an added amount of fat tissue.

 

Next, there’s the amount of food you are currently digesting. First thing in the morning, is when you have the least food in your digestive system as it will have been 9-10 hours since your last meal. Therefore, food being digested cannot influence your scale weight, unlike if you weighed yourself shortly after a meal.

 

Besides from keeping these variables at bay, what else can be done to improve the reliability and accuracy of scales measuring body composition? Firstly, you could also use a measuring tape and measure your Hip to Waist Ratio. This is productive because most people hold the majority of fat around their Waist area. Therefore, if you are trying to gain muscle mass and you put yourself in a calorie surplus and put on weight, you may believe you are getting closer to your goal. However, if you take measurements are realise your Waist measurement is increasing at a faster rate than your Hips, then this indicates you are putting on fat faster than muscle mass. This information can then lead to you making productive changes to your training and/or nutrition.

 

Next, it’s important to ensure you are setting yourself up for success. One way to do this is to ensure you are consuming enough protein and tracking it. Ensuring adequate protein intake with a suitable resistance training programme and sleep will ensure that any weight loss will not be due to loss of muscle mass. Alternatively, when gaining muscle, will ensure you are adding as much muscle mass as you can in the calorie surplus you are in.

 

In conclusion, scales are far from perfect when it comes to measuring body composition goals. However, with the correct information, it can be a very useful tool to help you stay on track when pursuing your goals.

 

How often should you change exercises?

The Study:

‘Kassiano et. al. (2022) Does Varying Resistance Exercises Promote Superior Muscle Hypertrophy And Strength Gains? A systemic review J Strength Cond Res.

 

What is the study is about?

 

It’s a review that tries to find evidence for how often exercises should change in an exercise programme in order to maximise results.

 

Results of the study:

 

  • Changing exercises too frequently seems to be less effective for muscle growth compared to sticking with the same exercises for an extended period of time.

 

  • Furthermore, there’s evidence supporting that less frequent exercise variation may promote greater long term muscle growth as a result of differences in regional hypertrophy

 

  • However, each exercise stresses specific ranges of a muscle. Therefore it might be beneficial to switch exercises every so often.

 

  • The general recommendation for how often you should change exercises looks to be in the region of every 4-6 weeks. Certain factors may change this though, such as enjoyment of a programme, linked to adherence.

 

Application to clients:

 

  • My recommendation would be to generally follow these guidelines with the exception of a couple of reasons: Firstly, if the client gets bored of certain exercises. Secondly, if the clients goals change. But if your goal is to become better at certain lifts then its likely that you will require those lifts throughout your macrocycle.

 

Principles of Training- Periodisation

Throughout the year, someone may have one, or two main, goals. This can apply to athletes and the general population. For example, an elite athlete may target peak performance for the Olympics in the summer, whereas someone in the general population may want to achieve their most aesthetic look for a specific holiday that summer.

 

Periodisation can be defined as the planned manipulation of training variables in order to maximise training adaptations and to prevent the onset of overtraining syndrome. This is important as, for many athletes, several different adaptations need to be improved upon throughout the year, in order to achieve peak performance. Also, they cannot work on all aspects of performance simultaneously, as they can only train for a finite number of hours per week and focussing on too many things in this time will not provide the adequate stimulus for improvement. Therefore, athletes and their coaches will prioritise different adaptations, in a set order, in order to achieve the best condition possible.

 

To give an example of this, let’s look at an endurance runner who is targeting a 5km race in summer. This structure can be applied to both recreational runners and elite runners, the difference between elite and recreational will come in training volume, as oppose to how they periodise their training.

 

If the race is in July, the runner will want to build their aerobic base between September and December. The aerobic base is built first for a couple of reasons. Firstly, it is comprised of low intensity running only, with some strength and conditioning work. This low intensity running is much easier to build up after the off-season, as hard running would result in overtraining and potentially injuries. Also, the aerobic base will help recovery time during and between hard running sessions in later phases, helping keep those sessions of a higher quality throughout each session and throughout the season.

 

Between January and June, they will slowly introduce harder running intervals, gradually getting more difficult as time goes on. Every coach has a different philosophy but typically, 2 hard workouts will be introduced each week. These will initially be at around lactate threshold speed. This helps the body increase the speed it can run at before lactate starts to accumulate and cause pain and fatigue. Then, even later on, towards May and June, hard interval workouts above race pace and above the lactic threshold will be introduced. These will help the athlete mentally and physically tolerate the feeling of lactic acid better. Ultimately helping them in the closing stages of the 5km race.

 

A couple weeks prior to the race the athlete will taper. This is where training volume is halved in order to reduce fatigue so the athlete is fresh for the race. Training isn’t ceased all together, as aerobic training adaptations can reverse in as little as two weeks. It would also be quite a shock to the system mentally to not run for two weeks and then try and run your fastest ever race. Nutrition will also be manipulated accordingly due to the lower calorie expenditure during the taper.

 

For a more general population client who only wants to look aesthetic, periodisation of training is less important. This is because training for muscle gain (hypertrophy) and muscle retention looks exactly the same. However, what we can periodise is the nutrition.

 

For example, if the holiday is one year away and the client is already in okay shape (up to 17% body fat approximately). Then we can bulk for the first 8 months whereby they are in a moderate calorie surplus (Maintenance calories+ up to 500kcal per day) with adequate protein (2.2g per kg of bodyweight). Along with their training and sleep, this is an optimal environment for muscle growth. However not all of this added weight will be muscle tissue, some fat tissue will be added.

 

Therefore, for the final 3 months, they can adopt a moderate calorie deficit (Maintenance calories – up to 500kcal), still with the same protein intake and adequate sleep. Training may need to be adjusted. This is because the calorie deficit may leave the person with slightly less energy compared to when they were in a calorie surplus. Therefore, other principles of training such as progressive overload, may not continue to progress at the same rate. However, this is okay when someone has aesthetic goals as this is an optimal environment for fat loss.

 

Overall, it’s important to identify exactly what adaptations need to occur for you to achieve your training goals and then to be able to focus on them in the right order, to attain the results you want, at the time you want as well.

 

Fast Bulk vs Slow Bulk

The Study: Garthe et. al. (2013), Effect of Nutritional Intervention on Body Composition And Performance In Elite Athletics. EUR J SPORT SCI

 

 

  • 39 elite athletes recruited for the study and split into 2 groups.

 

  • For 8-12 weeks (dependant on length of their off-season) One group completed a fast bulk (high calorie surplus) and the another completed a slow bulk with a much more moderate calorie surplus. Both groups had adequate protein in their diets to facilitate hypertrophy.

 

  • The higher calorie group gained weight at a rate of 0.4% of Bodyweight per week whilst the moderate calorie group gained weight at a rate of 0.2% of bodyweight per week.

 

  • Unsurprisingly, the fast bulk group gained more than twice the amount of bodyweight than the slow bulk group

 

  • However, there was only a small difference in lean mass (High calorie group averaged 1.7kg lean mass gained whilst moderate calorie group 1.2kg)

 

  • Also, the fast bulk group put on 5 times as much body fat (1.1kg vs 0.2kg) compared to the slower bulk group.

 

  • This study supports the idea that a smaller calorie surplus is better for maintaining a low body fat percentage in a bulk. However, if muscle gain is the sole goal, like open weight category powerlifters, then a faster bulk may be more beneficial.

Principles of Training – Individualisation

Each and every one of us is physically and mentally different. This is why, when it comes to training, everyone’s approach needs to be bespoke to them, if it’s going to be optimal.

 

One of these factors will be their starting point, in terms of ability, in their fitness journey. For example, if two people come to a personal trainer saying they wish to build better whole-body strength, then both will be assessed to see where their starting point is at. If it becomes clear one athlete has a proportionately stronger upper body than their lower body, and the other person vice versa then despite the same goal, their programmes will look different. The first person will need a more lower body focussed approach whereas the other person would need the opposite, this is an example of applying the principle of individualisation.

 

Another key factor to consider is lifestyle variations. Everyone has a life outside of the gym, all of which will include factors which influence their performance inside the gym. Therefore, this needs to be considered when programming. To give another example, imagine someone wants to become generally fitter all round. If they’re a labourer then you need to consider that their job is very taxing, therefore workload needs to be managed more carefully as to avoid overtraining and injury.

 

 

Next, there’s anatomical variants between each individual which can affect performance in the gym. For example, someone with a larger rib cage convexity, steeper sternum angle and short limbs is going to have a better chance at being better at the Bench Press compared to someone with a smaller ribcage, flatter sternum angle and long limbs, due to the first person having a shorter range of motion to achieve a full repetition and the line of pull on the pecs from insertion to origin. Another way in which anatomical differences influence training, can be down to active range. Everyone’s active range for a given movement is different. A common example would be overhead mobility. If someone cannot lift their hands directly above their heads (180 degrees of shoulder flexion) then trying to perform an overhead press is going to take them out of their active range and they will lean back to achieve the overhead position. This person will be putting a lot of stress on joint structures outside of this range and also increase the risk of injury when lifting outside of it. Therefore, consider this individual difference and give them an exercise that challenges them in their active range, for instance an incline press, set to a height whereby they are working in the active range that they can achieve.

 

Next, there’s two factors that link together. These are tolerance to training loads and responsiveness to training load. One’s tolerance to training load is going to help you in the initial phase of deciding things like how frequently they should train and how demanding each session should be. Their responsiveness to training will link closely with progressive overload. So, someone who responds very quickly to training will need to increase their training load more frequently than a slow responder. It’s important however that progressive overload is applied correctly to both people to prevent any from overtraining or undertraining.

 

Finally, the psychology behind training must also be taken into consideration. As with most things, intrinsic motivation is the key to long term adherence and this is achieved when someone feels competent, so the training programme must not feel too difficult for the participant. They also need relatedness, this comes from good relationships attached with the activity. Therefore, having great rapport with your PT, or attending the gym with a friend is a great idea. It’s also a reason why exercise groups with a more ‘community feel’ are more popular, the biggest example of this being the rapid growth of CrossFit over the past 10-15 years. Also, the participant must feel like they have autonomy, this can come via a number of ways such as having the freedom to train when they want, as well as being able to have a say in what they do during sessions (if they want that).

 

Overall, there’s many factors here to consider, it’s important to manage them all carefully, in order to ensure you are getting the most out of your training.

Principles of Training – Specificity

Different methods of training provide our bodies with a diverse range of stimuli, which in turn cause a wide variety of adaptations. This is why we need to apply the principle of specificity, which ensures that the training we are doing will provide our bodies with the correct stimuli to cause the desired adaptation and bring about the desired change to our performance or aesthetic measures of our physique.

 

In order to apply specificity, we need to work backwards. By this, I mean we first establish what element of our performance or aesthetic we want to change. In other words, this is your goal, such as lose body fat, increase muscle mass, run a faster 5k or increase your deadlift 1RM. Next, we take this change to performance or aesthetic and identify what adaptation will cause this.

 

To give some practical examples, let’s take some common goals and walk through the process of devising a training programme to optimise results. Firstly, it’s important to note that nutrition is paramount in any training goal you may have. However, as this article is only about applying specificity to our training programmes, we won’t touch upon that in this article.

 

If we look at programmes to increase muscle mass (hypertrophy) or optimise fat loss they are actually identical, it’s the nutrition which will differ. This is because in both of these programmes we want to provide as much stimulus to the muscle so that they have the best environment for growth when in a calorie surplus and the best environment to be retained in a deficit, thereby optimising fat loss.

 

When making a training programme ideal for optimising hypertrophy we need to look at which aspects of training that cause hypertrophy. These include: training close to/muscular failure on a regular basis, ensuring enough volume is completed on each muscle group throughout the week and ideally training each muscle group on 2 separate days per week. When it comes to training close to/at failure, it’s worth noting that this must be achieved by not only training hard but also selecting exercises with a high external stability so that it’s fatigue on the target muscle that is the limiting factor and not something else such as a loss of balance. Without this, we will have to cease the set prior to the muscle being close to failure and thereby not achieving our goal of that set.

 

Volume has been shown to have a linear relationship with hypertrophy i.e. when looking at it purely through the lens of specificity, the more volume, the better results. However, we need to apply the other principles of training in order to identify the optimal volume for each individual at a given time in their training cycle.

 

Next, let’s take a look at applying specificity to a popular performance based goal such as running a faster 5k. Now this is very context specific as there’s so many factors that go into improving 5km performance. Therefore, which element of training someone focuses on will differ between individuals, this will be talked about in much greater detail during the next blog on individualisation.

 

From a general perspective though, we need to identify that about 88-90% aerobic. Therefore, countless HIT sessions are not going to be very beneficial for 5km performance. Instead, we need to train aerobically for the vast majority of sessions. These are going to be made up of long easy runs, typically at an intensity around 60-65% of maximum heart rate. At this intensity, you should be able to hold a conversation quite easily, if you need to walk to achieve this then that is fine. Other types of training will be tempo runs and intervals where you are at the threshold between aerobic and anaerobic performance. This will help your body adapt to getting rid of lactic acid and be able to stay in aerobic respiration at faster paces. Lastly, a small proportion of the sessions will be anaerobic, working on speed endurance, as this accounts for a small part of 5km performance.

 

Overall, specificity is arguably the most important principle of training because if you get it wrong, your training can be extremely unproductive. The last thing you want to do is put 100% effort into a training programme only to fall massively short of your goals all because your sessions were bringing about ineffective adaptations in relation to your goals. Therefore, it is essential you learn how to apply the principle of specificity prior to writing any training programme.

Principles of Training – Progressive Overload

The principles of training are factors that should be applied to any training programme to ensure optimal adaptations. These principles include: Progressive Overload, Reversibility, Specificity, Individualisation and Periodization. To delve deeper into each of these, I will be writing an in-depth article on each, with this one discussing Progressive Overload.

 

When people start going to the gym, many start by feeling lost. Some will then look for guidance on what exercises to do, perhaps by going online, or to a friend to write them a few sessions to complete. For a number of weeks this plan may produce very good results with the trainee becoming stronger and possibly adding more muscle and/or reducing fat if following the correct nutritional protocol. However, if the programme doesn’t change over time then the progress it provides the trainee with will plateau.

 

This is where progressive overload needs to be applied. Progressive overload can be defined as the gradual increase in stress placed on the musculoskeletal system and nervous system over a period of time.

 

So how can a programme be appropriately changed in order to continue to bring about desired adaptations? There’s 4 variables we want to look at changing in order to continue progressing. These are: Volume, Intensity, Frequency and Interval Duration. Which variable you look to increase will differ depending on someone’s goals, which will be discussed below.

 

Firstly, volume= (sets x reps). Therefore, to increase volume, the sets or reps you perform for a given exercise will need to increase. Increases in volume have been shown to be a significant factor for increased hypertrophy. Therefore, anyone who has hypertrophy as their goal may find their time is most productively spent when choosing volume as the variable to progress in their plan. The amount of volume to increase will differ between individuals but as a rule of them, small increases such as 1 set per exercise every 2-4 weeks will provide an adequate increase in stimulus. However, everyone’s time is limited and even if you do have all day free, no one wants to be in the gym for hours. Therefore, that is when it is time to look at other variables such as intensity.

 

Intensity can be defined as the percentage value of maximal functional capacity. In the terms of weight training, this would be how close to your 1 rep max you are. With cardiovascular training, this would be how close you are to maximal exertion over a given distance, e.g. 30 seconds per km slower than 5k race pace. Increasing intensity is a great way to progress your training without adding any time to the sessions, which will be productive for anyone stuck for time in their day. However, as with every principle, people’s goals matter. For instance, if someone’s goal is to run a faster marathon, then increasing intensity of most of their runs will not provide beneficial adaptations.

 

Thirdly, you can increase the frequency of how often you train. This is as simple as training from 3 times per week to 4 times per week. By doing this, you are also increasing volume. It is worth considering though, that by increasing number of sessions, it may be productive to change your training split. For example, if your 3 sessions originally consisted of 3 whole body sessions, if you increase to 4 sessions it may be better for you to have two lower body days and two upper body days, in order to give certain muscle groups adequate time to recover before being trained again.

 

Next, we can change interval/ rest duration. The easiest way to make a session more difficult whether it’s resistance training or cardiovascular training, is to reduce the duration of rest periods between sets of lifting. However, once again, this is context dependant. For instance, to progress a training programme where increasing maximal strength is the goal, reducing rest will not be beneficial. This is because in order to increase max. strength, lifting weights close to 1RM makes up a lot of the session. This is not achievable if rest periods are short, therefore it would be more productive to keep interval duration the same and increase intensity.

 

Lastly, it is worth mentioning that only changing one variable at a time is probably wise, as increasing multiple variables at once increases the risk of overtraining. Furthermore, keeping the exercises the same can be useful as they act as the control variable. If they change to often then how can you be sure you are actually progressing certain variables when different exercises provide different stressors to our bodies.

Rep Ranges and Goals

Rep Ranges and Goals

1-5 reps for strength

6-7 Strength/Hypertrophy

8-12 for hypertrophy

13-15 Hypertrophy/Endurance

15+ Endurance

 

Research has actually shown that hypertrophy has been shown to be the same at any rep range as long as the muscle is taken close to failure and the load is anything above 30% 1RM

 

This study supports that claim: Fink, J., Kikuchi, N., Yoshida, S., Terada, K., & Nakazato, K. (2016). Impact of high versus low fixed loads and non-linear training loads on muscle hypertrophy, strength and force development. Springerplus5(1), 1-8.

 

Experienced endurance runners have actually been shown to increase performance more when spending their S+C sessions completing high load, low rep work compared to low load high reps as the increase in strength helps increase running economy in the latter stages of races

 

Study to support this claim: Ebben, W. P., Kindler, A. G., Chirdon, K. A., Jenkins, N. C., Polichnowski, A. J., & Ng, A. V. (2004). The effect of high-load vs. high-repetition training on endurance performance. The Journal of Strength & Conditioning Research18(3), 513-517.

 

Principles of Training: Reversibility

The principles of training are factors that should be applied to any training programme to ensure optimal adaptations. These principles include: Progressive Overload, Reversibility, Specificity, Individualisation and Periodization. To delve deeper into each of these, I will be writing an in-depth article on each, with this one discussing Reversibility.

 

It’s at this time of year where the majority of people go on their holiday and take a break from everything in life, including training. Alternatively, many people may have to cease training due to other reasons such as work and family commitments or injury. Depending on the amount of time taken off, one can experience reversibility.

 

Reversibility can be defined as the loss of fitness and/or performance adaptations via the withdrawal of tissue loading (which we get from training). Each adaptation takes a different amount of time to fade. For example, aerobic capacity and muscle elasticity have been shown to decrease after just 5 days of inactivity. However, strength has been shown to only decrease by 10% after 8 weeks without training. It’s important to note that other factors will also play a significant role in how quickly an adaptation is lost when training is stopped. These include the individual’s genetics, as well as nutrition. For example, if two bodybuilders were to stop training and one continued to consume a high protein diet and maintenance calories and the other who consumed inadequate amount of protein and ate below their maintenance calories, the latter is expected to experience a greater degree of reversibility.

 

Once someone experiences this, upon their return to training they are expected to experience a reduction in performance levels across the board. Also, lower recovery levels between sessions, susceptibility to DOMS (Delayed Onset Muscle Soreness) and increased risk of injury are expected- especially if the reason for cessation of training is due to an injury.

What can someone do to try and minimise the effects of the issues mentioned above? Upon returning to training after a break, what many people try and do is go and train extra hard, and twice as much in an attempt to make up for lost time. Unfortunately, our bodies do not work like that and this approach will only result in overtraining. This is because our bodies can only adapt to a given amount of a stimulus at one time and after a period of detraining, this size of the stimulus needed for maximal adaption actually decreases. Therefore, the best approach when returning to training is to decrease the FIT principles from FITT (Frequency, Intensity, Time) in order to moderate size of the stimulus on the body.

 

Frequency refers to the number of sessions per week that is being carried out, if you were training over 3 times per week prior to taking time off, it may be wise to decrease frequency by up to 50% and then gradually build back up. For example, if you originally trained 4 times per week and then took an 8-12 week break, you may train twice on your first week back, 3 times on your second and be back up to 4 sessions per week by your third week back into full training.

 

Intensity refers to how vigorous a session is. Therefore, if you went through a block of training whereby a number of your lifts were at 80% of your 1 rep max, then it may be sensible to decrease this load to 60% of your 1 rep max and increase it by 5% each week until you are back at 80%.

 

Time refers to the duration of each training session. This concept is best applied to cardiovascular exercise. Simply put, if you were running for 45 minutes each session prior to taking time away from training. You would look at decreasing this amount, depending on how much time you had away from exercise. Typically, you may decrease to 25 minutes if you took a month off, and then increase the duration by 5 minutes each week until you were back at 45 minutes.

 

All these precautions are necessary to try and reduce the risk of injury and to make sure the body can adequately recover between sessions instead of experiencing burnout and having to take more time away from training. It’s also worth noting that the stimulus needed to maintain performance is significantly less than what is needed to improve. Therefore, performance will not continue decrease, even on much smaller training loads whilst building back up.

 

The effect of volume on muscle growth

The effect of volume on muscle growth

 

The study: Schoenfeld, B. J., Contreras, B., Krieger, J., Grgic, J., Delcastillo, K., Belliard, R., & Alto, A. (2019). Resistance training volume enhances muscle hypertrophy but not strength in trained men. Medicine and science in sports and exercise51(1), 94

 

 

  • 45 men with an average lifting experience of 4.4 years of lifting performed the same exercises in the 8-12 rep range, 3x per week for 8 weeks

 

 

  • The men were split into 3 groups. One performed each exercise for 1 set per session, one group for 3 sets per session and 1one group for 5 sets per session

 

 

  • The results found a dose-response-relationship between sets performed and change in muscle thickness (muscle hypertrophy)

 

  • This was still the case with extremely high volumes up to 45 sets.

 

Summary and application:

 

  • In summary, the study supports the idea that higher volume results in increased hypertrophy even up to very high levels of volume (45 sets on a muscle group per week)
  • This information is applicable to the general population who may be experiencing plateaus in their training, which could be down to them not increasing their volume for a prolonged period of time.
  • How can you increase volume without spending vast amounts of time in the gym? Methods include drop sets, rest-pause sets and giant sets.